Use Sophia to knock out your gen-ed requirements quickly and affordably. Learn more
×

Standard Normal Table Review

Author: Sophia

what's covered
This tutorial will review the standard normal table. Our discussion breaks down as follows:

Table of Contents

before you start
In this tutorial, you'll use a Z-table to find probabilities — you can access or download a Z-table here.

1. Standard Normal Table

The standard normal table is the table that is used when you have a normal distribution, and you want to find probabilities or percent. The table can be used to do four things:

  1. The table value itself gives you the percent of observations below a particular z-score.
  2. You can find the percent above a particular z-score by subtracting the table value from 100% because the table value always gives the area to the left.
  3. You can find the percent of observations between two z-scores by subtracting the table values.
  4. You can find the percent of values outside of two z-scores by finding both the percent above the higher number and the percent below the lower number, which is sort of a combination of these other options.
term to know
Standard Normal Table
A table showing the values of the cumulative distribution function of the standard normal distribution.

1a. Percent Below a Z-Score

Suppose you want to know the percent of men who are shorter than 63.5 inches. Men's heights are normally distributed with a mean of 68 inches and a standard deviation of 3 inches. Using this distribution, 63.5 falls right between 62 and 65.

First, we need to find the z-score by using the following formula:

table attributes columnalign left end attributes row cell z equals fraction numerator x minus mu over denominator sigma end fraction end cell row cell x equals g i v e n space v a l u e equals 63.5 space i n c h e s end cell row cell mu equals m e a n equals 68 space i n c h e s end cell row cell sigma equals s t a n d a r d space d e v i a t i o n equals 3 space i n c h e s end cell row cell z equals fraction numerator 63.5 minus 68 over denominator 3 end fraction equals fraction numerator negative 4.5 over denominator 3 end fraction equals negative 1.5 end cell end table

The z-score ends up being negative 1.5; it's 1.5 standard deviations below the mean of 68.

Using the negative z-score table, you can go to the negative 1.5 row and the zero hundredths column and find that the probability is 0.0668.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
-2.9 0.0019 0.0018 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379


This means that about 7% of men are shorter than 63.5 inches.


1b. Percent Above a Z-Score

This example focuses on men taller than 72 inches. Again, we will use the same information that says men's heights are normally distributed with a mean of 68 inches and a standard deviation of 3 inches. What percent of men are over 6 feet tall?

Here's the normal distribution. Seventy-two inches is the cutoff value, and you want the percent of men that are taller than that.

To find this z-score, use the following formula:

table attributes columnalign left end attributes row cell z equals fraction numerator x minus mu over denominator sigma end fraction end cell row cell x equals g i v e n space v a l u e equals 72 space i n c h e s end cell row cell mu equals m e a n equals 68 space i n c h e s end cell row cell sigma equals s t a n d a r d space d e v i a t i o n equals 3 space i n c h e s end cell row cell z equals fraction numerator 72 minus 68 over denominator 3 end fraction equals 4 over 3 equals 1.33 end cell end table

The 72 inches standardizes to positive 1.33 for a z-score.

We can also take the normal distribution, centered at 68 with a standard deviation of 3, and convert it into the standard deviation of 1 and mean of zero. The image below is called the standard normal curve.

Our z-score was positive 1.33, so you will look in the positive z-score table. Positive z-scores deal with the tenths place and the hundredths place. Because your z-score was positive 1.33, you will go to the 1.3 row (tenths) and the 0.03 column (hundredths).

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319


At that intersection, you will find 0.9082, which is the area to the left of 1.33. But the question was asking the area above, so now you simply subtract from 100%.

.

table attributes columnalign left end attributes row cell P left parenthesis H e i g h t greater than 72 space i n c h e s right parenthesis end cell row cell equals 100 percent sign minus P left parenthesis H e i g h t less than 72 space i n c h e s right parenthesis end cell row cell equals 100 percent sign minus P left parenthesis z less than 1.33 right parenthesis end cell row cell equals 1 minus 0.9082 end cell row cell equals 0.0918 end cell end table

This tells us that 9.18% of adult men have heights over 72 inches.

1c. Percent Between Two Z-Scores

You can do another type of problem, which is finding the area between two values, such as 5'6" and 5'9", or 66 inches and 69 inches.

Something like this is a little trickier. When you standardize the values of 66 and 69, you end up with these two z-scores.

z equals fraction numerator x minus mu over denominator sigma end fraction
table attributes columnalign left end attributes row cell x equals g i v e n space v a l u e equals 66 space i n c h e s end cell row cell mu equals m e a n equals 68 space i n c h e s end cell row cell sigma equals s tan d a r d space d e v i a t i o n equals 3 i n c h e s end cell row cell z equals fraction numerator 66 minus 68 over denominator 3 end fraction equals fraction numerator short dash 2 over denominator 3 end fraction equals short dash 0.67 end cell end table table attributes columnalign left end attributes row cell x equals g i v e n space v a l u e equals 69 space i n c h e s end cell row cell mu equals m e a n equals 68 space i n c h e s end cell row cell sigma equals s tan d a r d space d e v i a t i o n equals 3 space i n c h e s end cell row cell z equals fraction numerator 69 minus 68 over denominator 3 end fraction equals 1 third equals 0.33 end cell end table

To find the probability of the area between these two numbers, you actually need to find the probabilities of both z-scores.

First, for the area corresponding to the z-score of positive 0.33, look in the positive z-score table at the 0.3 row and 0.03 column to find that the orange area shown below is 0.6293.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

Now, we need to consider our second z-score, negative 0.67. When you look at the negative z-score table for the negative 0.67 z-score, you find that its probability in the negative 0.6 row and the 0.07 column is 0.2514, shown in the green area below.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
-2.9 0.0019 0.0018 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

The area between 66 inches and 69 inches is the area below the 0.33 z-score but not below the -0.67 z-score. Therefore, we need to subtract the orange area by the green area to obtain the area between the two values, shown in blue below.

table attributes columnalign left end attributes row cell P left parenthesis H e i g h t less than 69 space i n c h e s right parenthesis minus P left parenthesis H e i g h t less than 66 space i n c h e s right parenthesis end cell row cell equals P left parenthesis z less than 0.33 right parenthesis minus P left parenthesis z less than short dash 0.67 right parenthesis end cell row cell equals 0.6293 minus 0.2514 end cell row cell equals 0.3779 end cell end table

The orange area is equal to 0.6293 and the green area is equal to 0.2514, so 0.6293 minus 0.2514 is 0.3779, which tells us that about 38% of men are between those two heights.

1d. Percent Outside Two Z-Scores

Lastly, you can find the area outside of a particular region. What percent of men are not within 2.5 inches of the mean of 68; in other words, what percent of men are not within 65.5 inches and 70.5 inches? What does this one look like? It looks like this, where this grey area is the particular area that we want.

All you do is add the two probabilities of the area below 65.5 and the area above 70.5. First, convert both of these to z-scores.

z equals fraction numerator x minus mu over denominator sigma end fraction
table attributes columnalign left end attributes row cell x equals g i v e n space v a l u e equals 65.5 space i n c h e s end cell row cell mu equals m e a n equals 68 space i n c h e s end cell row cell sigma equals s tan d a r d space d e v i a t i o n equals 3 i n c h e s end cell row cell z equals fraction numerator 65.5 minus 68 over denominator 3 end fraction equals fraction numerator short dash 2.5 over denominator 3 end fraction equals short dash 0.83 end cell end table table attributes columnalign left end attributes row cell x equals g i v e n space v a l u e equals 70.5 space i n c h e s end cell row cell mu equals m e a n equals 68 space i n c h e s end cell row cell sigma equals s tan d a r d space d e v i a t i o n equals 3 space i n c h e s end cell row cell z equals fraction numerator 70.5 minus 68 over denominator 3 end fraction equals fraction numerator 2.5 over denominator 3 end fraction equals 0.83 end cell end table

We get z-scores of negative 0.83 and positive 0.83. Now, since these two values are the same distance away from the mean and because of the symmetry of the normal curve, you can actually just find one of these two areas and double it. In general, you wouldn't be able to do that if they were different differences from the mean.

Let's find the probability of negative 0.83 in the table.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
-2.9 0.0019 0.0018 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776


You would find the area below the negative 0.83 z-score, which is 0.2033. Normally, you would find the area above the positive 0.83 z-score, but you don't have to do that because it's the same as the area below the negative 0.83 z-score. Just use the symmetry and double it to obtain about 41% of men being outside that range.

table attributes columnalign left end attributes row cell P left parenthesis H e i g h t less than 65.5 right parenthesis plus P left parenthesis H e i g h t greater than 70.5 right parenthesis end cell row cell equals P left parenthesis z less than short dash 0.83 right parenthesis plus P left parenthesis z greater than 0.83 right parenthesis end cell row cell equals 0.2033 plus 0.2033 end cell row cell equals 0.4066 end cell end table

summary
It's possible to use the standard normal table to find the percent of values above or below a particular value, or between two values, or even outside two values, using z-scores on the normal distribution. The normal probability table, also called the z-table or the standard normal table, can find these percents by finding the percent of values below a certain z- score, and subtracting as necessary.

Good luck!

Source: THIS TUTORIAL WAS AUTHORED BY JONATHAN OSTERS FOR SOPHIA LEARNING. PLEASE SEE OUR TERMS OF USE.

/
Terms to Know
Standard Normal Table

The table that allows us to find the percent of observations below a particular z-score in the normal distribution.